On Carlson’s inequality for Sugeno and Choquet integrals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stolarsky inequality for Sugeno and Choquet integrals

Keywords: Fuzzy measure Sugeno integral Choquet integral Stolarsky's inequality a b s t r a c t Recently Flores-Franulič, Román-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure k. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolar-sky inequality for Choquet integral is ...

متن کامل

Parametric Continuity of Choquet and Sugeno Integrals

We consider a fixed probability μ. For any λ ∈ (−1,∞), we denote by m(λ, μ) the λ-Sugeno measure generated by μ. For a fixed measurable set A, the continuity of the map λ 7−→ ∫ A fdm(λ, μ) is proved, where the integral is either Choquet or Sugeno. The asymptotic (marginal) cases λ = −1 and λ =∞ are studied too. Finally, some concrete computations illustrate the previous theory.

متن کامل

On Choquet and Sugeno Integrals as Aggregation Functions

This paper presents a synthesis on the essential mathematical properties of Choquet and Sugeno integrals viewed as aggregation functions. Some axiomatic characterizations are presented. Subfamilies of the class of those integrals are also investigated.

متن کامل

A note on Jensen type inequality for Choquet integrals

The purpose of this paper is to prove a Jensen type inequality for Choquet integrals with respect to a non-additive measure which was introduced by Choquet [1] and Sugeno [20]; Φ((C) ∫ fdμ) ≤ (C) ∫ Φ(f)dμ, where f is Choquet integrable, Φ : [0,∞) −→ [0,∞) is convex, Φ(α) ≤ α for all α ∈ [0,∞) and μf (α) ≤ μΦ(f)(α) for all α ∈ [0,∞). Furthermore, we give some examples assuring both satisfaction ...

متن کامل

Ion ChiŃescu, Parametric Continuity of Choquet and Sugeno Integrals

We consider a fixed probability µ. For any () 1, λ ∈ − ∞ , we denote by () , m λ µ the λ-Sugeno measure generated by µ. For a fixed measurable set A, the continuity of the map () , A fdm λ λ µ ∫ ֏ is proved, where the integral is either Choquet or Sugeno. The asymptotic (marginal) cases 1 λ = − and λ = ∞ are studied too. Finally, some concrete computations illustrate the previous theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2015

ISSN: 1432-7643,1433-7479

DOI: 10.1007/s00500-015-1909-9